8.2. Увеличение массы и жесткости фундаментов при их усилении (ч. 4)

Интересным является случай усиления фундамента шаровой мельницы МШЦ 32×45. Конструкция массивного стенчатого железобетонного фундамента аналогична приведенной на рис. 8.4. Опоры коренных подшипников и электродвигателя выполнены в виде пилонов, заделанных в нижнюю плиту. Отметка подошвы фундамента — минус 6 м, верха пилонов — плюс 3,3 м. Основанием являлись суглинки с расчетным давлением 0,25 МПа. Фундамент испытывал значительную вибрацию, амплитуды колебаний верхнего обреза опор в горизонтальном и вертикальном направлениях составляли 0,5—0,6 мм, превышая допустимые. Опоры под коренные подшипники мельницы имели трещины с шириной раскрытия до 3 мм, при этом существенно была нарушена целостность верхней части опоры и загрузочного устройства.

Динамический расчет фундамента показал недостаточную массу его для гашения колебаний при действующих динамических нагрузках. Измерение колебаний выявило криволинейный характер эпюр динамических перемещений опор по высоте, что указывало на их недостаточную жесткость в горизонтальном направлении. Для увеличения массы фундамента и повышения жесткости опорных пилонов были выполнены железобетонные обоймы по их периметру на всю высоту толщиной 300 мм; верхние части опор вместе с обоймами были дополнительно связаны горизонтальной железобетонной плитой толщиной 500 мм. После усиления фундамента, ставшего коробчатой конструкцией, амплитуда колебаний верхнего обреза его уменьшилась в 2 раза, при этом образования трешин не отмечалось.

Рассмотрим еще случай усиления массивного монолитного фундамента бесподвального типа под шаровую мельницу МШР 32×31 на одной из дробильно-обогатительных фабрик на Урале. Основанием фундамента по проекту должны были служить элювиальные суглинки твердой консистенции. Однако при производстве работ под частью фундамента был допущен значительный перебор грунта (на 1,5—2 м ниже отметки подошвы фундамента). Этот дефект производства работ был устранен насыпкой мелкозернистого песка с послойным уплотнением.

Спустя несколько лет после начала эксплуатации мельницы появились большие колебания ее фундамента с амплитудами, значительно превышающими допустимые. Эти колебания, мешая нормальной эксплуатации мельницы, вызвали, кроме того, недопустимые вибрации несущих и ограждающих конструкций здания фабрики, а также повышение общего вибрационного фона промышленного участка, оказывая вредное воздействие на обслуживающий персонал. Обследование фундамента мельницы показало, что произошло оседание грунта под одним из его торцов, захватившее более четверти площади подошвы фундамента. Одновременно было установлено, что за время эксплуатации произошел подъем уровня грунтовых вод, которые в момент обследования фундамента находились на уровне его подошвы. Сопоставление плотности песчаного грунта подсыпки D его максимальной структурной плотностью D0 позволило считать, что оседание песчаного грунта под фундаментом мельницы вызвано дополнительным уплотнением водонасыщенного песка под воздействием вибраций фундамента.

Усиление фундамента было выполнено путем устройства по его периметру железобетонной обоймы, опирающейся на буронабивные сваи диаметром 500 мм и длиной 3 м, которые передавали нагрузку от фундамента на элювиальный грунт ненарушенной структуры. Амплитуды колебаний усиленного фундамента и вибрации строительных конструкций здания уменьшились до допускаемых нормативными документами пределов.

При значительных деформациях фундаментов большого размера и сложной конфигурации, таких, например, как фундаменты дробильного оборудования при каскадной технологической схеме или фундаменты подвального типа под мощные машины с вращающимися частями, применять для восстановления их целостности только обойму недостаточно. Здесь требуется осуществлять комплекс восстановительных мероприятий.

Швец В.Б., Феклин В.И., Гинзбург Л.К. Усиление и реконструкция фундаментов